python词云

请注意,本文编写于 156 天前,最后修改于 156 天前,其中某些信息可能已经过时。

# 导入扩展库

import re # 正则表达式库
import collections # 词频统计库
import numpy as np # numpy数据处理库
import jieba # 结巴分词
import wordcloud # 词云展示库
from PIL import Image # 图像处理库
import matplotlib.pyplot as plt # 图像展示库

读取文件

fn = open('article.txt') # 打开文件
string_data = fn.read() # 读出整个文件
fn.close() # 关闭文件

文本预处理

pattern = re.compile(u't|n|.|-|:|;|)|(|?|"') # 定义正则表达式匹配模式
string_data = re.sub(pattern, '', string_data) # 将符合模式的字符去除

文本分词

seg_list_exact = jieba.cut(string_data, cut_all = False) # 精确模式分词
object_list = []
remove_words = [u'的', u',',u'和', u'是', u'随着', u'对于', u'对',u'等',u'能',u'都',u'。',u' ',u'、',u'中',u'在',u'了',

            u'通常',u'如果',u'我们',u'需要'] # 自定义去除词库

for word in seg_list_exact: # 循环读出每个分词

if word not in remove_words: # 如果不在去除词库中
    object_list.append(word) # 分词追加到列表

词频统计

word_counts = collections.Counter(object_list) # 对分词做词频统计
word_counts_top10 = word_counts.most_common(10) # 获取前10最高频的词
print (word_counts_top10) # 输出检查

词频展示

mask = np.array(Image.open('wordcloud.jpg')) # 定义词频背景
wc = wordcloud.WordCloud(

font_path='C:/Windows/Fonts/simhei.ttf', # 设置字体格式
mask=mask, # 设置背景图
max_words=200, # 最多显示词数
max_font_size=100 # 字体最大值

)

wc.generate_from_frequencies(word_counts) # 从字典生成词云
image_colors = wordcloud.ImageColorGenerator(mask) # 从背景图建立颜色方案
wc.recolor(color_func=image_colors) # 将词云颜色设置为背景图方案
plt.imshow(wc) # 显示词云
plt.axis('off') # 关闭坐标轴
plt.show() # 显示图像

Comments

添加新评论